الصفحة الرئيسية

كلية الحاسبات وتقنية المعلومات \ تقنية المعلومات

احمد دبيان سعد الجهني

نسبة اكتمال الملف الشخصي
الجنسية السعودية
التخصص العام علوم الحاسب
التخصص الدقيق أمن المعلومات
المسمى الوظيفي أستاذ مشارك
الدرجة العلمية (المرتبة) دكتوراه

نبذه مختصرة

_____________________________________________________________________________________

المؤهلات العلمية

Master Degree in Computer Science, University of Colorado at Denver, USA Doctor of Philosophy in Computer Science – Information Security, Catholic University of America, Washington DC USA

الاهتمامات البحثية

Information Security, Network Security and Privacy, Secure System Design, Internet of Things, AI for Cybersecurity

الخبرات والمناصب الإدارية

Chairman of Computer Engineering Department

الجدول الدراسي
اليوم المادة الوقت
من إلى
الأحد CEN 0491 19:00 22:00
الإثنين CEN 0492 09:00 12:00
الأبحاث والمؤلفات
  • Alharbi, Talal, Ahamed Aljuhani, and Bradley Taylor “A Collaborative SYN Flooding Detection Approach using NFV, International Journal of Computer Engineering and Information Technology (2019)
  • Alharbi, Talal, Ahamed Aljuhani, and Bradley Taylor “A Collaborative SYN Flooding Detection Approach using NFV, International Journal of Computer Engineering and Information Technology (2019)
  • Alharbi, Talal, Ahamed Aljuhani, and Hang Liu “SYN Flooding Detection and Mitigation using NFV, International Journal of Computer Engineering and Information Technology 101 (2018): 11- 19
  • Alharbi, Talal, et al “Smart and lightweight ddos detection using NFV, Proceedings of the International Conference on Compute and Data Analysis ACM, 2017
  • Alharbi, Talal, Ahamed Aljuhani, and Hang Liu “Holistic ddos mitigation using nfv, 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC) IEEE, 2017
  • Aljuhani, Ahamed, Talal Alharbi, and Hang Liu “Xfirewall: A dynamic and additional mitigation against ddos Storm, Proceedings of the International Conference on Compute and Data Analysis ACM, 2017
  • Aljuhani, Ahamed, and Talal Alharbi “Virtualized network functions security attacks and vulnerabilities 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC) IEEE, 2017
  • Aljuhani, Ahamed, Talal Alharbi, and Bradley Taylor “Mitigation of Application Layer DDoS Flood Attack Against Web Servers (2019)
  • M Saed and A Aljuhani, “Detection of Man in The Middle Attack using Machine learning, 2022 2nd International Conference on Computing and Information Technology (ICCIT), 2022, pp 388-393, doi: 101109/ICCIT5241920229711555
  • Al-gethami and A Aljuhani, “Detection of HTTP Attacks using Machine Learning, 2022 2nd International Conference on Computing and Information Technology (ICCIT), 2022, pp 344-348, doi: 101109/ICCIT5241920229711638
  • S Joshi, S Manimurugan, A Aljuhani, U Albalawi and A Aljaedi, “Energy-efficient and secure wireless communication for telemedicine in IoT, Computer Systems Science and Engineering, vol 43, no3, pp 1111–1130, 2022
  • T Alatawi and A Aljuhani, “Anomaly Detection Framework in Fog-to-Things Communication for Industrial Internet of Things, Computers, Materials & Continua, 2022
  • S Bacha, A Aljuhani, K Ben Abdellafou, O Taouali, M Alazab, “Anomaly-Based Intrusion Detection System in IoT Using Kernel Extreme Learning Machine, Journal of Ambient Intelligence and Humanized Computing, 2022
  • M Alanazi and A Aljuhani, “Anomaly detection for Internet of Things cyberattacks, Computers, Materials & Continua, vol 72, no1, pp 261–279, 2022
  • A Aljuhani, “Machine learning approaches for combating distributed denial of service attacks in modern networking environments, IEEE Access, vol no 9, pp 42236-42264, 2021
  • R Alanazi and A Aljuhani, "Anomaly detection for industrial internet of things cyberattacks," Computer Systems Science and Engineering, vol 44, no3, pp 2361–2378, 2023
  • Aljuhani, Ahamed, et al "Fog intelligence for secure smart villages: Architecture, and future challenges" IEEE Consumer Electronics Magazine (2022)‏
  • Kumar, Randhir, et al "Deep learning and smart contract-assisted secure data sharing for IoT-based intelligent agriculture" IEEE Intelligent Systems (2022)‏
  • Alazab, Mamoun, et al "Digital twins for healthcare 40-recent advances, architecture, and open challenges" IEEE Consumer Electronics Magazine (2022)‏
  • Kumar, Randhir, et al "Deep Learning-based Blockchain for Secure Zero Touch Networks" IEEE Communications Magazine (2022)‏
  • Kumar, R, Aljuhani, A, Kumar, P, Kumar, A, Franklin, A, & Jolfaei, A (2022, October) Blockchain-enabled secure communication for unmanned aerial vehicle (UAV) networks In Proceedings of the 5th International ACM Mobicom Workshop on Drone Assisted Wireless Communications for 5G and Beyond (pp 37-42)‏
  • Aljuhani, Ahamed "IDS-Chain: A Collaborative Intrusion Detection Framework Empowered Blockchain for Internet of Medical Things" 2022 IEEE Cloud Summit IEEE, 2022‏
  • Kumar, R, Aljuhani, A, Javeed, D, Kumar, P, Islam, S, & Islam, A N (2024) Digital twins-enabled zero touch network: A smart contract and explainable AI integrated cybersecurity framework Future Generation Computer Systems, 156, 191-205‏
  • Bacha, S, Aljuhani, A, Abdellafou, K B, Taouali, O, Liouane, N, & Alazab, M (2024) Anomaly-based intrusion detection system in IoT using kernel extreme learning machine Journal of Ambient Intelligence and Humanized Computing, 15(1), 231-242‏
  • Zidi, K, Abdellafou, K B, Aljuhani, A, Taouali, O, & Harkat, M F (2024) Novel intrusion detection system based on a downsized kernel method for cybersecurity in smart agriculture Engineering Applications of Artificial Intelligence, 133, 108579‏
  • Al-Hawawreh, M, Aljuhani, A, & Jararweh, Y (2023) Chatgpt for cybersecurity: practical applications, challenges, and future directions Cluster Computing, 26(6), 3421-3436‏
  • Kumar, P, Kumar, R, Aljuhani, A, Javeed, D, Jolfaei, A, & Islam, A N (2023) Digital twin-driven SDN for smart grid: A deep learning integrated blockchain for cybersecurity Solar Energy, 263, 111921‏
  • Aljuhani, A, Kumar, P, Alanazi, R, Albalawi, T, Taouali, O, Islam, A N, & Alazab, M (2023) A deep learning integrated blockchain framework for securing industrial IoT IEEE Internet of Things Journal‏
  • Soliman, S, Oudah, W, & Aljuhani, A (2023) Deep learning-based intrusion detection approach for securing industrial Internet of Things Alexandria Engineering Journal, 81, 371-383‏
  • Kumar, R, Kumar, P, Aljuhani, A, Jolfaei, A, Islam, A N, & Mohammad, N (2023) Secure Data Dissemination Scheme for Digital Twin Empowered Vehicular Networks in Open RAN IEEE Transactions on Vehicular Technology‏
جوائز التميز
  • Award of Excellence certificate was given by Prince Fahad Bin Sultan, for outstanding graduation students in Tabuk region
  • Class Honors Graduation, University of Fahad Bin Sultan, KSA
  • Award of Excellence in Research form the president of Tabuk University
المشاريع البحثية
اسم المشروع وصف المشروع
Project number S-1443-018, funding agency: University of Tabuk, project title: Designing a Security Framework for the Industrial Internet of Things
Project number S-1443-0111, funding agency: University of Tabuk, project title: Anomaly-Based Intrusion Detection System in Internet of Medical Things
Project number S-0226-1443, funding agency: University of Tabuk, project title: Data Driven Technique-Based Intrusion Detection for Smart agriculture
Development project for different technical domains in Emirate of Tabuk Province
Cybersecurity issues and solutions for industrial IoT
معلومات التواصل
البريد الإلكتروني : A_Aljuhani@ut.edu.sa
0144562945