

Course Specification (Postgraduate)

Course Title: Numerical Solution of Ordinary Differential Equations

Course Code:MATH670

Program: Master Program in Mathematics

Department: Mathematics

College: Science

Institution: University of Tabuk, KSA

Version: 2

Last Revision Date:1/12/1443 H

2023

ГРG-153

Table of Contents

A. General information about the course:	3
1. Teaching mode	3
2. Contact Hours (based on the academic semester)	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
1.References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	6
G. Specification Approval Data	7

A. General information about the course:				
Co	urse Identification			
1.	Credit hours:	3 H		
2. 0	Course type			
a.	University 🗆	CollegeDepartment \Box TrackOthers		
b.	Required 🗆 🛛 H	Elective⊠		
3.	Level/year at whic	h this course is offered:		
L	evel-2 or higher			
In this course, we will study some basic fundamentals of Numerical Solutions of Ordinary Differential Equations. Some important properties, theorems, problems, and applications will be also discussed.				
5.	Pre-requirements	for this course (if any): None		
6. Co- requirements for this course (if any): None				
7. Course Main Objective(s)				
Upon completion of the course students will be able to:				
1.	1. Understanding of numerical solutions of ordinary differential equations through various numerical techniques.			
2.	Acquire knowledge o	of solving initial and boundary value problems of first and second orders.		
3.	Study the finite differ conditions at infinity.	rence methods to solving second-order boundary value problems with boundary		
4	Study some recent me	ethods such as Homotony-Perturbation and Adomian's method for solving initial and		

- **4.** Study some recent methods, such as Homotopy-Perturbation and Adomian's method for solving initial and boundary value problems.
- 5. Acquire knowledge of solving difference equations and use it in the stability analysis.
- 6. Know that the numerical methods have been recently implemented in many applications.

Acquire cognitive skills through thinking and problem solving.

1. Teaching mode

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	45	100 %
2.	E-learning		
3.	Hybrid • Traditional classroom • E-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours

1.	Lectures	3 H /week
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding The students will be able to:			
1.1	Demonstrate advanced techniques of numerical methods	K1	Lestures Crown works	Exams, Quizzes,
1.2	Describe importance of different numerical techniques in solving ODEs in different fields	K2	Lectures, Group works, Presentations, Classroom discussion, Seminar, Case study, problem solving session	Research project, presentation, interactive discussion and participation, Surveys.
2.0	Skills The students will be able to:			
2.1	Apply numerical techniques in solving ordinary differential equations.	S 1		Exams, Quizzes, Home works,
2.2	Analyze numerical errors and stability of solutions of ODE problems.	S2	Lectures, Group works, Presentations, Classroom discussion,	Assignments, Research project.
2.3	Use computational algorithms to solve ODEs.	S3	Seminar, Case study, problem solving	presentation,
2.4	Communicate numerical methods ideas clearly.	S4	session	discussion and participation, Surveys.
3.0	Values, autonomy, and responsibi The students will be able to:	lity		
3.1	Demonstrate originality and self-learning.	V2	Lectures, Group works, Presentations,	Research project, Home
3.2	Demonstrate ability to work effectively and respectfully	V2	Classroom discussion, Seminar, Case study,	works, Assignments,

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	individually or within a group.		problem solving session	presentation, interactive discussion and participation, Surveys.

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to the methods of numerical and analytical methods	3
2	Euler's method for linear and nonlinear initial value problems	3
3	Euler's method for systems of first and second order ODEs	3
4	Runge-Kutta methods for first-order nonlinear initial value problem	3
5	Runge-Kutta methods for second-order linear and nonlinear initial value problem	3
6	Stability of Euler's and Runge-Kutta methods	3
7	Mid-Exam #	
7	Homotopy perturbation method	3
8	Adomian Decomposition method	3
9	Solutions of difference equations and its stability	3
10	Finite difference methods for solving two-point boundary value problems	3
11	Shooting methods for solving two-point boundary value problems	3
12	Numerical Solution of two-point boundary value problems in unbounded domains,	3
13	Numerical Solution of two-point boundary value problems in unbounded domains, i.e., with infinity boundary conditions	3
14	Recent numerical methods for initial value problems.	3
15	Recent numerical methods for boundary value problems.	3
16+17	Revision & Final Exam	
	Total	45

D. Students Assessment Activities

NoAssessment Activities *Assessment timing (in week no)	g Percentage of Total Assessment Score
--	---

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Home works and Assignments	Weekly basis	20%
2.	Mid-term exam	7th week	25%
3.	Presentation and discussion	During the Semester	15%
4.	Final Exam	At End of Semester	40 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

	Bruce Alan Wade 'Feliz Minhós 'Jesus Martin-Vaquero 'Juan L.
Essential References	G. Guirao, Analytical and Numerical Methods for Differential
	Equations and Applications ., Frontiers Media SA. (2021)
Summertive Deferences	Steven C. Capra, Applied numerical methods with MATLAB for
Supportive References	scientist and engineers, fourth edition (2017)
Electronic Materials	Digital Saudi Arabia
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Lecture Room with capacity of 30 students and equipped with White Board, Library
Technology equipment (projector, smart board, software)	Overhead projector and internet connection.
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Direct and Indirect
Effectiveness of students assessment	Teacher	Direct
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Teacher, Quality Committee	Direct and Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods(Direct, Indirect)

G. Specification Approval Data	
Council / Committee	Approval by the Department Council
Reference No.	DEPARTMENT COUNCIL NO (26)
Date	11/9/1444 H

