

Course Title: Perturbation Theory

Course Code:MATH658

Program: Master Program in Mathematics

Department: Mathematics

College: Science

Institution: University of Tabuk, KSA

Version: 2

Last Revision Date:1/12/1443 H

2023

ГРG-153

Table of Contents

A. General information about the course:	3
1. Teaching mode(mark all that apply)	3
2. Contact Hours (based on the academic semester)	3
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	6
F. Assessment of Course Quality	7
G. Specification Approval Data	7

A. General information about the course:

Course Identification					
1. Credit hours: 3 H					
2. Cou	rse type				
a.	University 🗆	College 🗆	Department⊠	Track	Others 🗆
b.	Required 🗆 E	Elective⊠			
3. Leve	el/year at which th	is course is offe	ered:		
 4. Course general Description Perturbation theory is used to solve the nonlinear differential equations having no exact or problematic solutions. In fluid mechanics, perturbation theory is applied to solve airfoil and wing aerodynamics as well as high and low Reynolds number flow. It is expected the students are familiar with this mathematical tool in this course and they can apply different methods to solve a regular or singular perturbation equation 5. Pre-requirements for this course (if any): None 					
5. Pre-requirements for uns course (ii any): None					
6. Co- requirements for this course (if any): None					

7. Course Main Objective(s)

- 1. Solve the nonlinear differential equations having no exact or problematic solutions.
- 2. Applications on fluid mechanics and applied to solve airfoil and wing aerodynamics as well as high and low Reynolds number flow.
- 3. Applications of different methods to solve a regular or singular perturbation equation

1. Teaching mode(mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	45	100 %
2.	E-learning		
	Hybrid		
3.	Traditional classroom		
	• E-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	3 H /week

2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	40

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding The students will be able to:			
1.1	Demonstrate the advanced concepts of differential and partial differential equations.	K1	Locturos, Group works	Exams, Quizzes,
1.2	Describe the advanced methods to solve the linear and non-linear differential and partial differential equation problems.	К2	Presentations, Classroom discussion, Seminar, Case study,	Research project, presentation, interactive
1.3	Describe the analytical methods to solve the initial and boundary value problems to get the desired results.	K2	session	discussion and participation, Surveys.
2.0	Skills The students will be able to:			
2.1	Apply the concept of perturbation theory in solving the linear and non-linear differential and partial differential equations.	S1	Lectures, Group works, Presentations,	Exams, Quizzes, Home works, Assignments,
2.2	Analyze the right analytical method to find the solution of problems.	S2	Classroom discussion, Seminar, Case study, problem solving	Research project, presentation, interactive
2.3	Solving complex mathematical problems in perturbation theory.	S2	session	discussion and participation, Surveys.
3.0	Values, autonomy, and responsibility The students will be able to:	Y		

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.1	Demonstrate responsibly to solve problems on time.	V2	Lectures, Group works,	Research project, Home
3.2	Demonstrate the responsibility to work independently.	V2	Presentations, Classroom discussion, Seminar, Case study, problem solving session	works, Assignments, presentation, interactive discussion and participation, Surveys

C. Course Content

No	List of Topics	Contact Hours
1	A short review on the solution of differential equations.	3
2	Asymptotic definitions	3
3	Uniformity & non-uniformity, Regular Perturbation: Algebraic equation, Expansion method.	3
4	Transcendental and Differential equations.,	3
5	Singular Perturbation-Examples.	3
6	Infinite domain Multiply of 'e' to the highest derivative	3
7	Mid-Exam #	
7	Type change of partial differential equation,	3
8	Invalid equations in singular regions.	3
9	Singularity removal	3
10	The method of strained coordinates	3
11	Light hill's technique.	3
12	Temple's Technique, Renormalization technique.	3
13	The method of Matched Asymptotic Expansion	3
14	Prandtl's Technique, Van Dyke's Technique	3
15	The method of multiple scales: Method descriptions, the two variable expansion	3

	procedure.	
16+17	Revision & Final Exam	
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Home works and Assignments	Weekly basis	20%
2.	Mid-term exam	7th week	25%
3.	Presentation and discussion	During the Semester	15%
4.	Final Exam	At End of Semester	40 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	1. Reza N. Jazar , Perturbation Methods in Science and		
	Engineering, Springer International Publishing (2021)		
Supportive References	2. Bhimsen Shivamoggi , Perturbation Methods for		
	Differential Equations, <u>Birkhäuser Boston</u> (2012).		
Electronic Materials	Saudi digital library		
Other Learning Materials	None		

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Lecture Room with capacity of 30 students and equipped with White Board, Library
Technology equipment (projector, smart board, software)	Overhead projector and internet connection.
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Direct and Indirect
Effectiveness of students assessment	Teacher	Direct
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Teacher, Quality Committee	Direct and Indirect
Other		
Assessor (Students Eaculty Program Leaders Deer Reviewer Others (specify)		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods(Direct, Indirect)

G. Specification Approval Data

Council / Committee	Approval by the Department Council
Reference No.	DEPARTMENT COUNCIL NO (26)
Date	11/9/1444 H

