

Course Specification

— (Postgraduate)

Course Title: Functional Analysis II

Course Code: MATH641

Program: Master Program in Mathematics

Department: Mathematics

College: Science

Institution: University of Tabuk, KSA

Version: 2

Last Revision Date: 1/12/1443 H

Table of Contents

A. General information about the course:	. 3
1. Teaching mode(mark all that apply)	
2. Contact Hours (based on the academic semester)	
C. Course Content	. 5
D. Students Assessment Activities	. 6
E. Learning Resources and Facilities	. 6
1. References and Learning Resources	. 6
2. Required Facilities and equipment	. 6
F. Assessment of Course Quality	. 6
G. Specification Approval Data	. 7

A. General information about the course:

Co	Course Identification				
1.	Credit hours:	3 H			
2. (Course type				
a.	University □	College □	Department⊠	Track□	Others□
b.	Required	Elective⊠			
3.	3. Level/year at which this course is offered:				
Lev	Level-2 or higher				
4. (4. Course general Description				

Compact Linear Operators and Their Spectral Properties, Spectral Properties of Bounded and Self-adjoint Operators, Spectral Family of Bounded Self-adjoint Operators, Spectral Representation of Bounded Self-adjoint Operators, Banach Algebra, Commutative Banach Algebra, Spectral Theory in Banach Algebra, Gelfand Mapping, Spectral Theorem for Normal Operators, Some Questions and Applications.

- 5. Pre-requirements for this course (if any): MATH653
- 6. Co- requirements for this course (if any): None

7. Course Main Objective(s)

- 1. Student continues to mature in their understanding of operators and their applications.
- 2. Students know about the spectral representation of bounded linear operators.
- 3. Students know about spectral properties in Banach Algebra.
- 4. Student acquires cognitive skills through thinking and solving of problems.
- 5. Student become responsible for their own learning through solutions of assignments and time management.

1. Teaching mode(mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	45	100 %
2.	E-learning	-	-
3.	HybridTraditional classroomE-learning	-	-
4.	Distance learning	-	-

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	3 H/week
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding The students will be able to:			
1.1	Demonstrate theoretical concepts of advanced functional analysis and related topics.	K1	Lectures, Group works, Presentations,	Exams, Quizzes, Research project,
1.2	Describe advanced analytical methods to solve problems of spectral theory of operators.	K2	Classroom discussion, Seminar, Case study, problem solving	presentation, interactive discussion and
1.3	Enhance Knowledge of research methodology in functional analysis.	К3	session	participation, Survey
2.0	Skills The students will be able to:			
2.1	Apply advanced concepts and solve mathematical problems in functional analysis.	S1	Lectures, Group works,	Exams, Quizzes, Home works,
2.2	Analyze complicated problems and applications of operators.	S2	Presentations, Classroom discussion, Seminar, Case study, problem solving session	Assignments, Research project, presentation, interactive discussion and participation, Surveys.
2.4	Communicate ideas accurately and	S4		

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	effectively using modern technology.			
3.0	Values, autonomy, and responsible The students will be able to:	ility		
3.1	Perform academic integrity and professional ethics when dealing with academic issues.	V1	Lectures, Group works, Presentations,	Research project, Home works,
3.2	Demonstrate and managing their time and duties with friends and with groups.	V2	Classroom discussion, Seminar, Case study, problem solving session	Assignments, presentation, interactive discussion and participation, Surveys

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to Bounded Linear Operators	3
2	Introduction to Compact Linear Operators	3
3	Introduction to Spectral Properties of Operators	3
4	Spectral Properties of Compact Linear Operators	3
5	Spectral Properties of Bounded Linear Operators	3
6	Spectral Properties of Self-adjoint Operators	3
7	Spectral Family of a Bounded Self-adjoint Operators	3
7	Mid-Exam-#	
8	Spectral Representation of Bounded	3
9	Self-adjoint Operators	3
10	Introduction to Banach Algebra	3
11	Commutative Banach Algebra	3
11	Spectral Theory in Banach Algebra	3
12	Gelfand Mapping and Its Applications	3
13	Gelfand Mapping and Its Applications	3
14	Spectral Theorem for Normal Operators	3
15	Some Questions and Applications	3
16+17	Revision & Final Exam	
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Home works and Assignments	Weekly basis	20%
2.	Mid-term exam	7th week	25%
3.	Presentation and discussion	During the Semester	15%
4.	Final Exam	At End of Semester	40 %

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	1. <u>Eberhard Malkowsky</u> <u>(Vladimir</u> Advanced Functional Analysis,
	<u>CRC Press</u> (2020).
Supportive References	1. Kolmogorov A.N. and Fomin S.V., Elements of the theory of functions and functional analysis, Dover Publications, (1999).
Electronic Materials	Saudi Digital Library
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Lecture Room with capacity of 30 students and equipped with White Board, Library
Technology equipment (projector, smart board, software)	Overhead projector and internet connection.
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Direct and Indirect
Effectiveness of students assessment	Teacher	Direct
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Teacher, Quality Committee	Direct and Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods**(Direct, Indirect)

G. Specification Approval Data

Council / Committee	Approval by the Department Council
Reference No.	DEPARTMENT COUNCIL NO (26)
Date	11/9/1444 H

