

Course Specifications

Course Title:	Introduction to numerical Analysis	
Course Code:	MATH 334	
Program:	Bachelor of Science in Mathematics	
Department:	Mathematics	
College:	Science	
Institution:	University of Tabuk	

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities6	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation	
H. Specification Approval Data6	

A. Course Identification

1. Credit hours: 03 Hours/Week
2. Course type
a. University College Department $$ Others
b. Required $$ Elective
3. Level/year at which this course is offered: L6/Y3
4. Pre-requisites for this course (if any): Math 2003; Stat 201
5. Co-requisites for this course (if any):
None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	45

B. Course Objectives and Learning Outcomes

1. Course Description

The main purpose of this course is to study nonlinear equations of one variable, the polynomial interpolation and differentiate and integrate numerically.

2. Course Main Objective

-Students will be able to recognize the importance of using numerical methods to solve problems. -Students will be able to demonstrate proficiency in applying numerical methods to a variety of mathematical and physical problems.

- Students will be able to interpret results of numerical solutions and draw conclusions.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	Students will be able to recall theories and concepts of numerical analysis	K1

	CLOs	Aligned PLOs
1.2	Students will be able to recognize Numerical Methods for solving	K2
	nonlinear equations- polynomial interpolation- Numerical	
	Differentiation - Numerical Integration	
2	Skills :	
2.1	Students will be able to apply the fundamentals of numerical analysis in	S3
	solving nonlinear equations	
2.2	Students will be able to use formulas for numerical procedures	S3
2.3	Students will be able to prove formulas of numerical analysis	S2
2.4	Communicate mathematical ideas to others clearly and accurately	S5
3	Values:	
3.1	Students will be able to develop enhanced self-learning.	V1
	Students will be able to work independently and in groups.	V2

C. Course Content

No	List of Topics	
	Introduction To Numerical Analysis	3 Hrs
1	Numerical Solutions of non-linear equations in one variable – The	
	Bisection method	
2	Numerical Solutions of non-linear equations in one variable – The	3 Hrs
	simple fixed point iteration method	
3	Numerical Solutions of non-linear equations in one variable the	3 Hrs
	Newton's method(for one dimensional and multidimensional)	
4	Numerical Solutions of non-linear equations in one variable – the	3 Hrs
	secant method, the Muller's Method	
5	Fundamental theorem of interpolation – the Lagrange interpolation	3 Hrs
	polynomial	
6	6 Mid-Exam 1	
7.8	Finite differences –forward differences and backward difference –	6 Hrs
7,0	Newton's forward and backward difference interpolating formulae	
	Numerical Differentiation -Central Divide differences- Forward and	3 Hrs
9,10	Backward Divide differences interpolating formulae	
	Numerical Differentiation - Forward and Backward Divide	6 Hrs
11	differences interpolating formulae	
	Hermite interpolation formulae	
11	Mid-Exam 2	
10	Numerical integration– The Trapezoidal rule - The Composite	3 Hrs
12	Trapezoidal rule- Local truncation Error, Gaussian Quadrature	
13	Numerical integration- The Simpson's rule - The Simpson's 1/3 rule,	3 Hrs
	The Composite Simpson's rule- Local truncation Error	
	Numerical integration - The Simppson's 3/8 rule - The Composite	3 Hrs
14	Simpson's 3/8 rule- Local truncation Error	
15	Revision & Final Exam	3 Hrs
Total		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and	Assessment
Methods	

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding			
1.1	Students will be able to recall theories			
	and concepts of numerical analysis	Introducing now ideas		
	Students will be able to recognize	through case study	I II Midterm Exams Final Exams Homework assignments	
	Numerical Methods for solving	Lectures		
12	nonlinear equations- polynomial	Class Discussions		
1.2	interpolation- Numerical			
	Differentiation - Numerical			
	Integration			
2.0	Skills			
	Students will be able to apply the			
2.1	fundamentals of numerical analysis in			
	solving nonlinear equations			
2.2	Students will be able to use formulas		Quizzes I II Midterm Exams	
2.2	for numerical procedures	Lectures		
23	Students will be able to prove	Class Discussions	Final Exams	
2.3	formulas of numerical analysis		nomework assignments.	
2.4	Communicate mathematical ideas to			
2.4	others clearly and accurately			
3.0	Values			
3.1	Students will develop enhanced self-			
5.1	learning.	Lectures	Quizzes	
2.2	Students will be able to work	Group discussions	Group work	
3.2	independently and in groups.	Group discussion	Group work	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works and Assignments and Quizzes	Weekly basis	10%
2	Mid Exam-I	6 th week	25%
3	Mid Exam-II	11 th week	25%
4	Final Exam	At end of the Semester	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Six office hours per week in the lecturer schedule.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Richard Khoury and Douglas Wilhelm Harder, Numerical Methods and Modelling for Engineering, Springer, International Publishing Switzerland, 2016
Essential References Materials	Graham de Vahl Davis, Numerical Methods in Engineering & Science, Springer, 1986
Electronic Materials	None
Other Learning Materials	None

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1.Lecture room with maximum capacity of 30 students and equipped with White Board, Overhead projector and internet connection.
	2.Library
Technology Resources (AV, data show, Smart Board, software, etc.)	Projectors
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment	Students	Direct and Indirect
Extent of achievement of course learning outcomes	Teachers	Direct
Quality of learning resources	Students	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Program and study plan committee
Reference No.	
Date	25/08/2021