

Course Specifications

Course Title:	Differential Equations II	
Course Code:	MATH305	
Program:	Bachelor of Science in Mathematics	
Department:	Mathematics	
College:	Science	
Institution:	University of Tabuk	

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	
D. Teaching and Assessment4	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities5	
1.Learning Resources	5
2. Facilities Required Error! Bookmark not del	fined.
G. Course Quality Evaluation6	
H. Specification Approval Data6	

A. Course Identification

1. Credit hours: 03 Hours/Week
2. Course type
a. University College Department $$ Others
b. Required $$ Elective
3. Level/year at which this course is offered: L6/Y3
4. Pre-requisites for this course (if any): Math 204
5. Co-requisites for this course (if any):
None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	45

B. Course Objectives and Learning Outcomes

1. Course Description

The main purpose of this course is to provide students with the importance of advanced differential equations in mathematical and Engineering Science, knowledge by learning the System of first-order differential equations, Series solutions of first-order differential equations with some applications, derivatives, and integrals of Laplace transform.

2. Course Main Objective

-Student will be able to recognize the importance of the advanced differential equations in mathematical and Engineering Science, by learning a variety of methods of solving differential equations.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
1.1	Students will be able to recall knowledge of the concepts of differential equations	K1
1.2	Students will be able to recognize methods of differential equations in practical problems.	K2
1.3		

	CLOs	Aligned PLOs
1		
2	Skills :	
2.1	Students will be able to evaluate solution of differential equations using Laplace transform	S1
2.2	Students will be able to analyze the mathematical problems using Fourier Legendre and Fourier Bessel Series.	S1
2.3	Students will be able to solve physical problems using above techniques.	S 3
2.4	Students will be able to communicate with Peers and Lectures	S5
3	Values:	
3.1	Students will be able to develop enhanced self-learning.	V1
3.2	Students will be able to work independently and in groups.	V1

C. Course Content

No	List of Topics	Contact Hours
1	System of first-order equations- Introductory remarks	3 Hrs
2,3	Homogenous linear system with constants coefficients.	6 Hrs
4	Introduction and review of power series	3 Hrs
5	Series solutions of first-order DE	3 Hrs
6	Mid-Exam#1	
6	Second order differential equations – ordinary points	3 Hrs
7	Laplace transform, introduction	
8,9	Derivatives of Laplace transform	6 Hrs
10,11	Integrals of Laplace transform	6 Hrs
11	Mid-Exam#2	
12,13	Applications to Differential Equations.	6 Hrs
14	Nonlinear differential equations- Introduction - Methods of solutions	3 Hrs
15	Revision & Final Exam	3 Hrs
	Total	45 Hrs

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Students will be able to recall knowledge of the concepts of differential equations	Introducing new ideas	Quizzes
1.2	Students will be able to recognize methods of differential equations in practical problems.	through case study Lectures Class Discussions	I II Midterm Exams Final Exams homework assignments.
2.0	Skills		
2.1	Students will be able to evaluate solution of differential equations using		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	Laplace transform		
2.2	Students will be able to analyze the mathematical problems using Fourier Legendre and Fourier Bessel Series.	Lectures Class Discussions	Quizzes I II Midterm Exams Final Exams
2.3	Students will be able to solve physical problems using above techniques.	Class presentation	Homework assignments.
2.4	Students will be able to communicate with Peers and Lectures		
3.0	Values		
3.1	Students will be able to develop enhanced self-learning.	Lectures Class Discussions	Quizzes Homework assignments.
3.2	Students will be able to work independently and in groups.	Group work	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Home works and Assignments and Quizzes	Weekly basis	10%
2	First mid-term exam	6th week	25%
3	Second mid-term exam	11th week	25%
4	Final Exam	At end of the	40%
Ŧ		Semester	

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice : Six office hours per week in the lecturer schedule.

F. Learning Resources and Facilities

1.Learning Resources Differential Equations: 3rd. Edit. (1998): John Wiley & Sons., Inc. **Required Textbooks** Author; Shepley L. Ross Allan Struthers, Merle Potter, Differential Equations for Scientists and Engineers, Springer, 2019 **Essential References** Adkins, William A., and Mark G. Davidson. "Linear Constant **Materials** Coefficient Differential Equations." Ordinary Differential Equations. Springer, New York, NY, 2012. 275-329. **Electronic Materials** None **Other Learning** None **Materials**

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	1.Lecture Room with max capacity of 30 students and equipped with White Board, Overhead projector and internet connection.
	2.Library
Technology Resources (AV, data show, Smart Board, software, etc.)	Projectors
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching and assessment	Students	Direct and Indirect
Extent of achievement of course learning outcomes	Teachers	Direct
Quality of learning resources	Students	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Program and study plan committee
Reference No.	
Date	25/08/2021